QWORLD INTRODUCTION TO CLASSICAL SYSTEMS

Jibran Rashid

An engineer, a physicist and a mathematician...

What is Your Favourite Super Power?

What is Your Favourite Super Power?

What is Your Favourite Super Power?

MANIPULATE PROBABILITY!!!

Deterministic Classical Information

A physical device X has some finite, non-empty set of states. $\{H,T\}$ $\sum_{i=1}^{n} [O,1]$ $\{a,b,c,d\}$ How does the state of the system change? $f: \{0, 1\} \rightarrow \{0, 1\} \qquad \frac{x \quad f_1 \quad f_2 \quad f_3 \quad f_4}{0 \quad 0 \quad 0 \quad 1 \quad 1}$ $\Sigma_{1}^{2} = \{0, 0, 0, 10, 11\}$ What about multiple such devices? $f: ho, l^{n} \longrightarrow fo, l^{n}$ $\left| \sum_{n=2}^{n} \left| = 2^{n} \right| \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \right| \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{X_{1} \times 2_{2} \dots \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{X_{1} \times 2_{n}} f \qquad f: f_{0}, f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{1} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{1} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{1} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{1} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{1} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{1} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{1} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} = 2^{n} \xrightarrow{D} f_{2} \longrightarrow \{0, 1\} \\ \xrightarrow{D} f_{2}$ $\left|\sum^{n}\right| = 2^{n}$

Probability
$$\hat{Y}$$
Probability (State of X=0) = P
Probability (State of X=1) = I-P $\hat{y} = \begin{pmatrix} P \neq y_0 \\ (-P \neq y_0) \end{pmatrix}$ Note:When we look at \underline{X} we do not see \hat{y} , \underline{P} but rather some state $\underline{s \in \Sigma}$ with probability $\underline{y_s}$

$$P(H|H) \xleftarrow{H} (A) (P) (H|T) (A P + b(I-P)) (P + b(I-P)) (P + d(I-P)) ($$

Deterministic Ops as Matrices

$$A_{o} = \stackrel{\mu}{\begin{pmatrix} I & I \\ I & I \\ T & O & O \end{pmatrix}}, A_{i} = \begin{pmatrix} I & O \\ O & I \end{pmatrix}, A_{2} = \begin{pmatrix} O & I \\ I & O \end{pmatrix}, A_{3} = \begin{pmatrix} O & O \\ I & I \end{pmatrix}$$

always 'H' identity NOT always 'T'
 $e.g., A_{3} \begin{pmatrix} P \\ I-P \end{pmatrix} = \begin{pmatrix} I-P \\ P \end{pmatrix}$

How does the State of the System change?

Probabilist op.

$$B = \sum_{i=0}^{3} p_i A_i, \quad p_i \ge 0, \quad \le p_i = 1$$

$$e.g. F_{=-\frac{1}{2}} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} p \\ 1-p \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\frac{1}{2} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

How does the State of the System change?

Qs. We flip a coin
$$T(P)$$
 { if we get a head, we flip again.
 $H(Q)$ { if we get a tail, we turn the coin over,
i.e., we make it a head.
 $T(P)$ { P
 $H(P)$ = (PQ)
 $P+q)^2$

Multiple Devices with Incomplete Information

Coin X,
$$\begin{pmatrix} P \\ A \end{pmatrix}_{T}^{H}$$

Tensor Product
 $\begin{pmatrix} P \\ A \end{pmatrix} \otimes \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} pr \\ ps \\ qr \\ qr \\ TT \end{pmatrix}$
Note Not all 4-dim probability vectors can be written
in the above form.
e.g. $\frac{1}{2}\begin{pmatrix} r \\ q \\ q \end{pmatrix} \otimes \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} pr \\ ps \\ qr \\ TT \\ qr \\ TT \end{pmatrix}$
 $P(x_{1}x_{2}) \neq P(X_{1}) P(X_{2})$
 $\frac{1}{2}\begin{pmatrix} r \\ q \\ r \\ r \\ rT \end{pmatrix} = \begin{pmatrix} r \\ q \\ r \\ rT \end{pmatrix}$

Multiple Devices with Incomplete Information

$$A \otimes B = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \otimes \begin{pmatrix} b_1 & b_2 \\ b_2 & b_4 \end{pmatrix} = \begin{pmatrix} a_1 B & a_2 B \\ a_3 B & a_4 B \end{pmatrix}$$
$$= \begin{pmatrix} \left[a_1 & b_1 & a_1 & b_2 \right] & \left[a_2 b_1 & e_2 & b_2 \right] \\ \left[a_1 & b_3 & a_1 & b_4 \right] & \left[a_2 b_3 & a_2 & b_4 \right] \\ \left[a_3 B & a_4 B \right] \\ a_3 B & a_4 B \end{pmatrix}$$
There exist 4x4 transformations $C \neq A \otimes B$.

Multiple Devices with Incomplete Information

How can a Biased Coin Simulate a Fair Coin?

Assume we have a coin $\begin{pmatrix} P \\ I-P \end{pmatrix}$, $P \neq 0$, $P \neq \frac{1}{2}$. How can we simulate a fair coin?