QWORLD

INTRODUCTION TO QUANTUM SYSTEMS

Jibran Rashid

Quantum Bit (Qubit)

Modelling a quantum system X with
$$\Sigma = \{0, 1\}$$

Central Claim of Quantum Physics
To describe an isolated quantum system we need
to give an amplitude ($\kappa \in C$) for each possible
state $\sigma \in \Sigma$.

$$\hat{V} = P\left(\begin{matrix} I \\ 0 \end{matrix}\right) + \left(I - P\right) \begin{pmatrix} 0 \\ I \\ \end{matrix}\right)$$

$$P \neq 0 \qquad \text{convex} \\ \text{combination}$$

Classical

Quantum

$$\hat{V} = \chi \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\chi, \beta \in C$
What are the
restrictions on
 χ, β
Moving forward
assume $\chi, \beta \in \mathbb{R}$

Getting Probabilities from Amplitudes

Born Rule
Probability to observe a particular outcome,
e.g., Prob(X is in state o) is given by

$$\begin{pmatrix} x \\ p \end{pmatrix} \longrightarrow \alpha^2 \longrightarrow Pr(X=0)$$

 $\beta^2 \longrightarrow Pr(X=1)$
assuming
 $x, A \in \mathbb{R}$
 $\hat{v} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + B \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 $\alpha^2 + \beta^2 = 1$

Quantum Bit (Qubit)

For real amplitudes, we can describe the state as

$$\hat{v} = \cos \Theta \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \sin \Theta \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \Theta \in [0, 2\pi]$$

 $= \begin{pmatrix} \cos \Theta \\ \sin \Theta \end{pmatrix}$ superposition
 $\hat{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\hat{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$V = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Qubit on a Unit Circle

Quantum Operations

$$\hat{w} = \hat{v} \hat{U}$$

H^T = H Symmetric

$$U \hat{V} = \hat{W}$$

$$U \begin{pmatrix} \vdots \\ \kappa_i \end{pmatrix} = \begin{pmatrix} \vdots \\ \beta_i \end{pmatrix}$$

$$\sum_{i} \chi_i^2 = 1 = \sum_{i} \beta_i^2$$
i) $U^T U = 1$ identity, $U^T = U^T$
ii) U^T is the inverse of U ,
 U is reversible
In general, Unitary transformations.

Quantum Operations

Ket Notation

$$V = column vector$$

$$V = (1) = \hat{V}$$

$$V = (0) = \hat{V}$$

$$V = (0)$$

$$V = (0)$$

$$V = vector$$

$$V = vector$$

$$V = (0)$$

$$V = (0)$$

$$\kappa \begin{pmatrix} 1 \\ 0 \end{pmatrix} + B \begin{pmatrix} 0 \\ 1 \end{pmatrix} \longrightarrow \kappa \{0\} + B \{1\} = \{1\} \\ \Re \{0\} + R \{1\} \end{pmatrix} \longrightarrow \kappa \{0\} + \Re \{1\} = \{1\} \\ \kappa \begin{pmatrix} 0 \\ 0 \end{pmatrix} + B \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \Re \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \Re \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow \kappa \{0\} + \Re \{1\} \end{pmatrix}$$

$$\leq \psi \{1\} \otimes \psi \{1\} \otimes \psi \{1\} \otimes \psi \{1\} \end{pmatrix}$$

$$(\kappa \langle 0 | + B \langle 1| \end{pmatrix} (\kappa \langle 0 \rangle + \Re \{1\}))$$

$$(\kappa \langle 0 | 0 \rangle + \kappa \langle 0 \rangle + \Re \langle 0 \rangle +$$

Quantum Operations

Hadamard Matrix

$$H^{T}H = 1$$

$$H^{T}H = 1$$

$$H^{T} = H$$

$$H^{T} = H$$

$$H^{T} = H$$

$$H^{T} = H$$

$$H^{T} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 100 + 100 \end{pmatrix} = \frac{1+2}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$H^{T} = \frac{1}{\sqrt{2}} \begin{pmatrix} 100 - 100 \end{pmatrix} = \frac{1-2}{\sqrt{2}} \begin{pmatrix} 100 - 100 \end{pmatrix} = \frac{1-2}{\sqrt{2}}$$

$$H^{T} = \frac{1}{\sqrt{2}} \begin{pmatrix} 100 - 100 \end{pmatrix} = \frac{1-2}{\sqrt{2}} \begin{pmatrix} 100 - 100 \end{pmatrix} = \frac{1-2}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 100 - 100 \end{pmatrix} = \frac{1-2}{\sqrt{2}} \begin{pmatrix} 100 - 100 \end{pmatrix} = \frac{1-2}{\sqrt{2}}$$

Classical vs Quantum Coin Flipping

$$\begin{pmatrix} l \\ o \end{pmatrix} \longrightarrow F \longrightarrow \frac{l}{2} \begin{pmatrix} l \\ l \end{pmatrix}$$

$$\binom{1}{0}$$
 - F - F $\frac{1}{2}\binom{1}{1}$

 $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

 $F = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $F \begin{pmatrix} P \\ I - P \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Question 12: What is your favorite interpretation of quantum mechanics?

	42%			
c. De Broglie-Bohm:				
0%				
d. Everett (many wor	lds and/or many	minds):		
18%				
e. Information-based/	information-theor	etical:		
24	4%			
f. Modal interpretatio	on:			
0%				
g. Objective collapse	(e.g., GRW, Penn	ose):		
9%				
h. Quantum Bayesian	nism:			
6%				
i. Relational quantum	mechanics:			
0%				
j. Statistical (ensemb	le) interpretation:			
0%				
k. Transactional inter	pretation:			
076				
1. Other:				
1276				
m. I have no preferre	d interpretation			

Multiple Qubits

$$\begin{split} |\psi\rangle &= \kappa |o\rangle + \beta |i\rangle, \quad |\psi\rangle &= \delta |o\rangle + \delta |i\rangle \\ |\psi\rangle \otimes |\psi\rangle &= |\psi\rangle |\psi\rangle &= |\psi\psi\rangle = |\chi\rangle \\ &= (\kappa |o\rangle + \beta |i\rangle) \otimes (\delta |o\rangle + \delta |i\rangle) \\ &= \kappa \delta |o\rangle + \kappa \delta |oi\rangle + \beta \delta |ii\rangle = \begin{pmatrix} \kappa \beta \\ \kappa \delta \\ \beta \delta$$